HIGHWAY RELIABILITY SUPPLY EFFECTS

F.N. McLeod and N.B. Hounsell
University of Southampton, Transportation Research Group
R.S. Bain
Steer Davies Gleave

1. INTRODUCTION

The Department of Transport is funding a substantial research
programme into urban congestion and the possible role of road
pricing. A key element of this research is the development of
a strategic road pricing model (APRIL) to enable the impact
of alternative road pricing proposals to be evaluated.

To enable travellers’ responses to road pricing to be
assessed (e.g. change of mode, time of travel, route,
destination etc.) APRIL has been specified to be sensitive to
a number of attributes of travellers and of the ‘supply
system’ - in particular, the highway network model.

One factor which is perceived to influence demand is travel
time reliability. APRIL’s formulation, based on generalised
cost concepts, was therefore extended to incorporate a
reliability indicator, the precise nature of which was to be
derived through empirical research.

The Department of Transport commissioned Steer Davies Gleave
with the Transportation Research Group at the University of
Southampton to undertake a three-month research project into
highway travel time reliability and its supply effects. This
paper describes our findings and conclusions. The
methodology adopted covers the following stages:

(a) A general review of research on travel time reliability
and its relationship with supply and demand; this is
summarised in section 2 of this paper.

(b) The development of a suitable simulation model to
explore the effects of congestion and changes in supply
characteristics of travel time variability; this would
enable the team to test different functional forms and
select the most suitable one for incorporation into
APRIL; this is described in section 3.

(c) The design and implementation of a limited survey in
London to refine calibration of the model form selected
as a result of (b); this survey and the resulting
calibration and validation of the model are reported in
section 4.
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(d) To draw conclusions from the research, as reported in
section 5.

2. m

The first phase of the study involved a detailed literature
review to identify previous studies concerned with journey
time variability and its prediction. In particular, the
review was aimed at identifying:

(a) Possible traffic and network indicators for inclusion in
the models and,

(b) Typical 1levels of Jjourney time variability for
comparison with the results predicted from the
subsequent modelling work.

2.1 Sources of Travel Time Variability

Travel times in urban areas are governed largely by (i)
drivers’ desired speeds, (ii) speed limits, (iii) speed/flow
effects on links and (iv) 1link/junction capacities. For
cities like London, drivers’ speeds are influenced by speed
limits, although, some "inter-vehicle" variability in travel
time can still occur due to differences in driver styles and
vehicle type. Other causes of such variability can be
related to junction operations such as the arrival time at
signals relative to the signal aspect and to characteristics
of the road, e.g. loading/unloading of lorries, parking and
pedestrian movements.

However, a key factor affecting travel times and their
variability is the level of congestion, which itself depends
on the relationship between demand and capacity (supply).
Factors which influence demand include time of day (travel to
and from work), day of the week (working days, Fridays) and
time of year (influenced by holidays, school terms etc.).
Factors which influence supply include weather conditions
(e.g. rain and fog), lighting conditions and incidents such
as accidents, breakdowns, signal failures and roadworks.

2.2 Previous Studjes

A number of surveys have been undertaken in London to measure
travel times and associated variabilities on selected routes.
All studies reflect between-day variability, and most reflect
inter-vehicle and within-day variability to some extent. Key
findings are that:

(i) The coefficient of variation (CoV) of travel time, i.e.
the ratio of standard deviation to the mean, increases
with reducing average speed. Thus, variability increases
with increasing congestion. For example, early work by
Smeed (1968) indicated CoV values of 0.33, 0.70 and 2.30
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at 20, 10 and 5 mph speeds respectively. 1In later work
(Smeed and Jeffcoate, 1971), CoV values ranging from
0.11 to 0.15 for mean journey times of between 62 and 79
minutes, corresponding to different starting times in a
peak period, were recorded.

(ii) For current average speeds in central London of
10-12mph, the typical CoV found on one route was 0.15 to
0.20 for journeys on repeated days with the same start
time (excluding journeys affected by incidents).

Surveys have also been carried out in Leeds (Montgomery and
May, 1987). Analysing journey time variability on five
radial routes in Leeds, they developed explanatory models to
predict mean travel time. These models explained up to half
the within-day and between-day variability in terms of lagged
flow (ie. flow over the previous 30 minutes) and up to half
the remaining variability in terms of time during the peak,
day of week, season, visibility and weather. From 170 time
periods of data, 59 had CoV values of 0.10 or less while 105
had values of 0.15 or less.

3.  MODELLING

The second phase of the study involved the use of network
modelling to generate a database of typical journey time
variability for origin-destination (0-D) movements from which
generalised predictive models for journey time variability
would be produced.

The key requirements for the model were that it should
adequately reflect time-varying demand, queuing and
congestion, and provide Jjourney time predictions for
individual 0-D pairs so that both within-day and between-day
variability could be monitored. The model had also to be
well-established, with proven capabilities for dynamic
assignment and junction/link modelling on a network of
sufficient size for the study. These requirements led to the
selection of CONTRAM (Leonard et al, 1989), and its incident-
derivative, CONTRAMI (University of Southampton, 1992), for
use in the study.

3.1 CONTRAM and CONTRAMI

CONTRAM is a dynamic traffic assignment model developed at
the Transport Research Laboratory (TRL) and typically used
for the assessment of traffic management schemes in urban
networks. CONTRAM uses a ‘packet-based’ assignment approach
in which packets (i.e. groups of vehicles) are assigned to
their optimal routes taking account of the dynamic traffic
conditions encountered on those routes. Packet size can be
reduced to one, for individual vehicle modelling, and a
flexible generalised cost equation can be wused for
assignment.

193



CONTRAM is often used to model time-varying conditions within
a peak period and it then reflects within-day travel time
variability for that time period. Different time periods can
then be modelled separately, as required. However, the
assignment process produces results which can be interpreted
as being a long-term average for conditions in that time
period, and between-day variability is not explicitly
reflected. For the purpose of this study, it was important
to reflect travel time variability for drivers undertaking
repeated trips at a similar time on different days (eg.
commuting trips). New techniques were therefore developed
within CONTRAM to model this between-day variability as
described in section 3.3.

The ‘incident version’ of CONTRAM - CONTRAMI - has also been
available to this study. CONTRAMI was developed by the
University of Southampton for TRL to better reflect vehicle
routing and network performance in incident conditions, when
the equilibrium assumption of "perfect" knowledge of traffic
conditions becomes inappropriate. CONTRAMI loads routes from
the normal (equilibrium) case and these remain fixed when
modelling an incident, except that regular drivers can divert
at any junction if they encounter an unexpected queue ahead
and if a reasonable alternative route exists.

3.2 The Network

The network used in this study was a CONTRAM model of an area
of inner London (north), used by Sir Alexander Gibb &
Partners in a contract for DoT/TRL concerning modelling the
effects of the pilot Red Route. The model was based on a
larger SATURN model developed during the East London
Assessment Study (ELAS) and covered a morning peak period
(0800-0900hrs) .

The network area is defined by the River Thames to the south,
the A102 (M) to the east, the North Circular to the north and
Euston Station to the west. This represents an area of
around 100 sq kms, with trip lengths of up to 15 kms.
Network congestion is high in this part of London. The
average network speed in the time periods modelled was 14
km/hr.

The network consists of over 1600 links (of which over 50%
are signal controlled), 560 junctions and 195
Origins/Destinations.

3.3 Methodology

The key requirements of the modelling were that it should be
possible to represent the main causes of between-day journey
time variability and that, by suitably combining runs of
different scenarios, a reasonable representation of journey
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time variability could be obtained for a large variety of O-D
movements in the network. The modelling was aimed at
generating indicators of the main factors affecting journey
time variability, and typical trends, with calibration being
subsequently achieved from surveys. Three main causes of
journey time variability were identified for representation
in the modelling:

(i) day-to-day fluctuations in demand,
(ii) environmental effects on capacity,
(iii) traffic incidents.

Random between-day variability in demand was generated
following a procedure adopted by the MVA Consultancy (1989)
in an earlier study. This involved attributing a normal
distribution to each 0-D demand level, in which the variance
was set equal to the mean, and randomly sampling from this
~distribution to produce a ‘new’ O0-D demand. This produced a
mean and variance of the percentage change in demand of 0%
and 18% respectively when averaged across all O-D pairs. This
procedure was repeated several times, using different random
numbers, to produce a set of randomly differing O-D demand
files. Systematic between-day variability in demand was
introduced by applying a multiplying factor to all O-D demand
levels (ie. factors of 0.94, 0.97. 1.03 and 1.06).
Environmental effects on capacity were introduced by reducing
junction saturation flows by 6% to account for the effects of
wet weather, as reported by Kimber et al (1987) for traffic
signals.

Aside from the availability of CONTRAMI, a further
enhancement was made to CONTRAM to allow between-day
variability in minor incidents to be reflected. Although
empirical evidence is scarce, experience suggests that
repeated minor incidents - illegal parking, short breakdowns
and so forth - are an important contributory cause of
between-day travel time variability. This enhancement
consisted of introducing random (but constrained) saturation
flow reductions on around 50% of links, which gave an average
decrease in capacity (for those links affected) of around 5%
(with a range of between 1% and 20%). Different random
samples were taken to produce a set of randomly differing
saturation flow conditions.

3.4 Analysis

The average route journey time for 2000 selected O-D pairs
for one time period was recorded for each of the CONTRAM runs
indicated above. The standard deviation of the route journey
time was calculated for each 0O-D pair from this data set.
These standard deviations then formed the dependent variable
for the subsequent multivariate analyses.



The selection of 2000 O-D pairs gave rise to a large
database, incorporating a variety of trip attributes:

(1) different levels of congestion;
(i) a mixture of trip lengths;

(iii) trips in ’inner’/’outer’ London;
(iv) radial/orbital routes.

The independent variables considered were largely constrained
by the need for compatibility with APRIL - for this reason
variables, such as lagged flows, which were suggested from
the literature review, could not readily be used here. The
variables chosen were free flow travel time (FFTT), delay
(JT-FFTT) and a congestion index (CI = JT/FFTT), where JT is
journey time. Many trips incorporated a mixture of
inner/outer and radial/orbital 1links, and it proved
impractical to attempt to separate these with the network
available. ‘Atypical’ trips with a journey time of less than
2 minutes, or a congestion index of more than 5 were
discarded from the database.

3.5 Results

The relationships between travel time variability and the
proposed explanatory variables are shown in the following
figures:

Figure 1 - Standard deviation of JT v Congestion Index
Figure 2 - Standard deviation of JT v Free Flow Travel Time
Figure 3 - Standard deviation of JT v Delay

where each data point represents a different O-D pair.

It can be seen from these figures that there is considerable
scatter in the data indicating that no one variable by itself
is able to explain most of the travel time variability.
Conceptually, it may be expected that the standard deviation
of travel time (o) should increase with increasing CI. This
is consistent with the results of Smeed (1968), who reported
increasing co-efficient of variability with reducing speed.
It could be that, at high values of CI, increased congestion
does not cause increased travel time variability perhaps
because traffic has entered a ‘forced flow’ state. There is
some indication of this in Figure 1, where, above a CI value
of about 3, the data are particularly scattered and ¢ is not
noticeably rising.

Figure 2 illustrates the highly scattered relationship
between ¢ and FFTT. It was expected that ¢ would increase
with increasing FFTT (which is also a proxy for route
length). However, FFTT was found to explain only some 7% of
travel time variability in this data set.
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Figure 3 illustrates a positive trend between o and delay.
Also, there is evidence to suggest that the rate of increase
of o0 reduces as the level of delay increases.

Various linear and non-linear regression relationships were
investigated. The following 4 model formulations gave the
best results (values for coefficients are given in Table 1):

o =q(CI - 1) (1)
o0 =a + B(CI_~- 1) + 4 (FFTT) (2)
o = a (FFTT)P fcI - 1) (3)
o = a(JT-FFTT) (4)

The above models explained between 35% and 42% of the travel
time variability found from the simulation runs. These models
were then carried forward for calibration and final selection
based on the survey results.

4. SURVEYS

4.1 Survey Programme

The final phase of the study required calibration of the
‘preferred’ model (resulting from the CONTRAM runs) and
subsequent validation of this model. To enable this, a
programme of journey time surveys was undertaken by driving
along a sample of those links represented in the network and
noting the link travel times.

In total, 40 weekday AM peak survey runs were conducted. To
ensure consistency, the surveys commenced at the same time
each morning and covered the same route. Considerable care
was taken to ensure that the selected route wvas
representative of the wider network. It was recognised that
it was almost impossible to have a network that would fully
represent all possible journeys in the strategic model APRIL.
Moreover, our survey measures link (and not journey) travel
times and their variabilities; because of their nature it is
not possible to associate APRIL 1links directly to either
CONTRAM or real (surveyed) links. Therefore, the survey was
designed so that trips of different length could be
identified and modelled. We then hoped to develop models
that would not depend on a particular distribution of journey
lengths.

In total, 1,600 individual link times were recorded and were
input in to a spreadsheet for analysis of their variance.
The data were stored on a link-by-link basis thus enabling
the analysis to be undertaken using single links or a
combination of them. A key objective was to derive a model
which was independent of the trip length distribution. In
addition, the journey times relating to 5 of the 40 links
were ‘held back’ to permit model validation at a later stage.
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4.2 Results

The survey data were grouped into chains of 1, 3, 5 and 10
links. Regression relationships were obtained for each chain
length for each of the four model formulations [1]-[4] which
were proposed from the CONTRAM modelling.

The two linear models, [1] and [2], demonstrated coefficient
values which increased as the number of links in the chain
increased. This result was not unexpected. 1In urban areas,
the majority of the delay takes place at junctions and
therefore the number of them that are encountered in a route
is likely to affect travel time variability. As such, models
[1] and [2] were discounted.

Earlier regressions using the model form ¢ = a FFTT (CI - 1)
revealed a values that decreased as the chain 1length
increased. In an attempt to stabilise the a values, FFTT was
raised to a power of less than one. After exploration using
a range of power values the power of 0.87 was found to give
the most consistent a values (Table 1 - model [3]). This
result suggests that trip length, as a proxy for number of
junctions in a route, has a multiplicative effect on travel
time variability through the congestion index.

Model [4)] (Table 1) was also found to meet the criteria of
good fit (high R?) and parameter stability. Both models [3)
and [4) were strong candidates at this stage having the
following attributes:

(i) Relatively simple model forms, being based on
parameters available in APRIL.
(ii) The models are logical in that ¢ is zero when

congestion (JT/FFTT) or delay (JT-FFTT) is zero
and in that o increases with increasing congestion

and delay.

(iii) The models are relatively insensitive to trip
length.

(iv) The models provide good overall fit to the

floating car data and the model forms are
supported by the simulation data.

Models [3] and [4] were validated against data not used in
the calibration process. The results of this work showed
that the model predictions for these links were consistent
with the observations; for more details see Steer Davies
Gleave (1993).

Model [3] was finally considered preferable to model [4)
based on its predictions of CoV outside of the data ranges
which were used to calibrate the models. The predictions
given by model [3] were found to be similar to those found in
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practice (Smeed,1968) whereas model [4] underpredicted CoV at
high values of FFTT and CI.

4.3 comparison of Survey and Simulatjon Results

The coefficients found for the survey results were
significantly different from those found from the simulation
results. Reasons for the differences include

- Modelling errors inherent to any simulation and, in
particular,

- Errors in generating travel time variability (for which
there is no proven or generally accepted method).

= For reasons of cost the survey runs could not cover the
full range of link types and traffic conditions which
were modelled. The more condensed scatter in the survey
data and, consequently, the 1lower unexplained
variability was, therefore, to be expected.

An encouraging aspect of the comparison of simulation and
floating car results is the similarity in the absolute values
of o predicted/recorded and the existence of similar trends
in relationships between o and the explanatory variables CI,
FFTT and JT. Differences are most marked in the regression
coefficients (Table 1). The main deficiency in the modelling
appears to be the underprediction of variability at high
values of congestion/delay; Table 2 shows predictions of o
and CoV using model [4] (model [3] gives similar results) for
a range of values of JT and FFTT. Where delay is high, the
simulation predictions of CoV are considerably lower than
floating car predictions and are at the lower end of the
range 0.1-0.2 found in other studies (Smeed, 1968).

5. CONCLUSIONS

Research has been undertaken to identify simple models to
incorporate travel time variability into fairly conventional
transport models. The strategic model for road pricing,
APRIL, uses an extended generalised cost formulation where
travel time variability is an additional cost element; this
treatment is supported by research into the behavioural
responses to travel time variability.

Alternative functional forms for modelling the supply side of
this formulation were explored using a combination of
simulation work and detailed surveys in London. This work
resulted in the development and calibration of the model form

o = 0.9FFTT?-®7 (CI-1)
This model offers a simple form for relating the standard

deviation of travel time to network conditions and is
relatively insensitive to trip length, therefore offering
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promise for adaptation to environments different from London.
One advantage of this treatment is that journey time
variability can be estimated after assignment and then
incorporated into other choice models (time of day, mode,
destination choice). Complex interactions between
congestion, travel time variability and route choice are then
avoided.
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EGRES 0
Model Model R?
No.
SIMULATION
1 o = 131 (CI - 1) 35%
2 o = 98 CI + 0.07FFTT - 97 42%
3 o = 37FFTT%-2 (CI-1) 39%
4 o = 13 (JT-FFTT)?-4 40%
SURVEY
3 o = 0.9FFTT?-87 (cI-1) 88%
4 o = 2 (JT-FFTT)0-75 94%
Notes:

1. The coefficient of determination (R2) is defined as:
Rz = 1 - (RSS/TSS)
where, RSS = the residual sum of squares, and
TSS = the total sum of squares.

2. Data ranges for the simulation data were: 1 < CI < 3,
120 < FFTT < 2000 seconds and 140 < JT < 4200 seconds.

Data ranges for the survey data were: 1 < CI < 3,
6 < FFTT < 360 seconds and 12 < JT < 1000 seconds.

§imu1ation

.
L8]

96 (0.21)
127 460.221)
168 (0.19)
127 (0.14)
168 (0.14)
222 (0.15)
150 (0.11)
198 (0.11)
261 (0.10)

.
v

.
wn

WNEERWNEWN =

1 Model [4) based on floating car data: o=2(JT-FFTT)?-75
2 Equivalent model based on simulation data: o=13(JT-FFTT)?-4

Figures in brackets are co-efficient of variation (o/JT)
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